
 

 

  

 

 

EEE521 Final Year Project Report  

School of Computing, Engineering & 

Intelligent Systems 

Evan Gallagher B00642761 

 

BSc Hons Computer Science  

 

Scraping Websites for Law Enforcement 

 

Supervisor Professor Kevin Curran  

Second Marker Dr Daniel Kelly 

 

03/05/18 
 

 

 



 

 

 

 

 Evan Gallagher   

 

Acknowledgements 

I would like to thank my project supervisor, Professor Kevin Curran for the help and 

support he has given me over the course of this project. 

I would also like to give thanks to my family and friends for supporting me during this 

year. 

 



 
 

Contents 

1 INTRODUCTION ............................................................................................................... 2 

1.1 Aims and objectives .......................................................................................................... 3 

1.2 Literature review ............................................................................................................... 4 

1.2.1 Crime on the Internet ........................................................................................ 4 

1.2.2 Surface Web, Deep Web and Dark Web ....................................................... 6 

1.2.3 Web Scrapers .................................................................................................... 8 

1.2.4 Memex ................................................................................................................ 9 

1.2.5 Spotlight ............................................................................................................ 10 

1.2.6 Google’s Human Trafficking Group .............................................................. 12 

1.2.7 Import.io ............................................................................................................ 12 

1.2.8 Web Scraper (webscraper.io)........................................................................ 14 

1.3 Summary of the report .................................................................................................... 16 

2 ANALYSIS ........................................................................................................................ 17 

3 DESIGN ............................................................................................................................. 22 

3.1 Use Case .......................................................................................................................... 22 

3.2 System Architecture ........................................................................................................ 23 

3.3 Website Design ............................................................................................................... 25 

3.4 Database Schema ............................................................................................................ 28 

3.5 Class Specification .......................................................................................................... 29 

4 IMPLEMENTATION AND TESTING ............................................................................ 32 

4.1 Development Approach .................................................................................................. 32 

4.2 Implementation ............................................................................................................... 33 

4.2.1 Database .......................................................................................................... 33 

4.2.2 Spider ................................................................................................................ 35 

4.2.3 Web Application ............................................................................................... 36 

4.3 Testing ............................................................................................................................. 41 

5 EVALUATION AND REFLECTION .............................................................................. 44 



 

 

5.1 Evaluation ....................................................................................................................... 44 

5.2 Reflection ........................................................................................................................ 47 

5.3 Conclusions ..................................................................................................................... 47 

6 REFERENCES .................................................................................................................. 48 

7 APPENDICES ................................................................................................................... 50 

7.1 Appendix A Use Case Descriptions ................................................................................ 50 

7.2 Appendix B Code ............................................................................................................ 53 

7.3 Appendix C Test Suite .................................................................................................... 83 

 

  



 

 

Table of Figures 

Figure 1.1: Number of users of the Internet from 2000 to 2015 (ITU, 2015) ........................... 4 
Figure 1.2: Types of crime in 2016 in the USA by number of victims (IC3, 2017) ................... 5 
Figure 1.3: Structure of the web as an iceberg (Europol, 2017) ............................................... 8 
Figure 1.4: Infographic showing how Spotlight was used from September 2015 to 2016 

(Boorse, 2016) ......................................................................................................... 11 
Figure 1.5: Comparison of hotel prices between September 6th to 7th 2017 (Import.io, 2017)

 ................................................................................................................................. 13 
Figure 1.6: Interface for submitting login credentials (Import.io, 2017) ..... Error! Bookmark 

not defined.3 

Figure 1.7: Ecommerce website selector graph in Web Scraper ........... Error! Bookmark not 

defined.4 

Figure 1.8: Exported CSV of scraped data using Web Scraper ............. Error! Bookmark not 

defined.5 
Figure 2.1: Representation of the Waterfall Methodology .... Error! Bookmark not defined.9 
Figure 2.2: Representation of the Agile Methodology ......... 20Error! Bookmark not defined. 
Figure 2.3: Gantt chart showing the stages of the project .. 21Error! Bookmark not defined. 

Figure 3.1: Use case diagram of the proposed system ........ 22Error! Bookmark not defined. 
Figure 3.2: Architecture diagram of the proposed system .. 23Error! Bookmark not defined. 
Figure 3.3: Architecture of Scrapy spiders (Scrapy, 2017) . 24Error! Bookmark not defined. 
Figure 3.4: Sitemap of the proposed system ........................ 25Error! Bookmark not defined. 

Figure 3.5: Sign in page ........................................................ Error! Bookmark not defined.6 
Figure 3.6: Index page ........................................................... Error! Bookmark not defined.6 

Figure 3.7: Message displayed when the spider scrapes a website ... 26Error! Bookmark not 

defined. 

Figure 3.8: General report .................................................. 27Error! Bookmark not defined. 
Figure 3.9: Advanced search page ...................................... 27Error! Bookmark not defined. 
Figure 3.10: Custom report ................................................. 27Error! Bookmark not defined. 

Figure 3.11: Database schema of the proposed system ...... 28Error! Bookmark not defined. 
Figure 3.12: Class diagram of the proposed system ........... 29Error! Bookmark not defined. 

 

 

List of Tables 

Table 5.1: Evaluation of functional requirements ............... Error! Bookmark not defined.44 

Table 5.2: Evaluation of non-functional requirements ........ Error! Bookmark not defined.45 

   

file:///E:/Documents/University/Year%204/Project/Gary%20Mansell%20-%20Interim%20Report.docx%23_Toc437366125
file:///E:/Documents/University/Year%204/Project/Gary%20Mansell%20-%20Interim%20Report.docx%23_Toc437366126


EEE521 Final Year Project 2017/18  B00642761 

 

 

1 

 

 

Abstract 

As the Internet and World Wide Web continue to expand and amass more users, 

increased rates of crime occur. One such crime is modern slavery, or human 

trafficking. Social media and web forums are often employed by traffickers to recruit 

and advertise victims anonymously. 

While this issue continues to propagate through both the surface web and the dark 

web, web scraping tools must be developed to extract and analyse the information 

on these websites to identify traffickers and victims of human trafficking. 

This project aims to investigate how crime continues to occur on the Internet and 

where on the web this is. Solutions to the problem using current web scraping 

technology are researched, along with other, more freely available web scrapers. 

The proposed system for this project is a web scraper that is able to access and 

extract data from websites using a web application as an interface for user 

interaction. The extracted data is then stored in a database, as the web application 

allows the user to search through and query the saved findings. When the system 

has been fully implemented, a reflection on the completed system takes place, 

judging to see if a web scraper can successfully be implemented to combat the issue 

of human trafficking. 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

2 

 

 

1 Introduction  

Since the dawn of the digital age, many people have used the Internet and the World 

Wide Web (web) in their everyday lives. These users often use the web as a means 

of communication, with forums, chatrooms and even video hosting sites being the 

key platforms. Users of the Internet are, for the most part, anonymous, which allows 

users to openly discuss personal topics and allows users to be free of discrimination, 

as people are equal under anonymity (Palmer and Berglund, 2004). While 

encouraging users to become anonymous has allowed the World Wide Web to 

become a success, it has also allowed criminals to use the web to commit crime 

while hiding behind a wall of anonymity. 

A major crime that is committed using the web as a platform, is modern slavery, or 

human trafficking. More accurately, the web is used to recruit potential victims, luring 

them to take risks with the promise of a better life (Logan et al., 2009). In 2012, there 

was an estimated 20.9 million victims of forced labour in the world, many of which 

are also victims of human trafficking (ILO, 2012). As this is an estimate, real victims 

are often hard to spot with current methods of detection, as only 21,251 victims were 

detected between 2014 and 2016 (UNODC, 2016a). 

As human traffickers, and perpetrators of other crimes, use the web to commit 

offences, specialist tools must be used to track down these instances. One such 

method is to use a web scraper. Web scrapers are closely related to web crawlers 

and while there are no real industry definitions for these terms, a distinction is often 

made. Web crawlers, or spiders, are often used in search engines, as they crawl or 

scan through a website, looking for links for indexing purposes. Web scrapers may 

still crawl through a website, however a web scraper is a software that extracts data 

from webpages and stores the data in a database for further manipulation. 

Due to the current number of victims and perpetrators of human trafficking that are 

unaccounted for, law enforcement agencies must turn to specialised tools, like web 

scrapers, to have a chance of intercepting these cases. Government bodies and 

non-governmental organisations alike have been recently researching and 

developing web scrapers for use in law enforcement, as manually searching through 

websites is highly inefficient and wastes time and money. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

3 

 

 

1.1 Aims and objectives 

This project sets out to conduct research in the area of web scraping and how it can 

be used as a tool for law enforcement agencies. The main focus of this project is 

spotting the potential occurrences of human trafficking online through extracting 

information from websites, however this can be applied to any crime found on the 

web. 

To do this, a web scraper will be created to automate the process of extracting data 

and information from websites. Any potential occurrences of human trafficking will be 

stored in a database so that they can be searched and queried from. 

The core aims of this project are: 

• To build an understanding of the topics of crime on the Internet, web crawling 

techniques and web scrapers. 

• To create a web scraper to crawl through and extract data relating to human 

trafficking from websites. 

• To log the findings in a database for further manipulation. 

• To develop a web application to use as a front end and allow the user to 

operate the web scraper through an intuitive interface. 

The deliverables for this project are: 

• Web scraper 

• Database 

• Web application 

• Interim report 

• Final report 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

4 

 

 

1.2 Literature review 

1.2.1 Crime on the Internet 

As the Internet sets out to connect the world, more people than ever are using the 

Internet and the World Wide Web in their everyday lives. Estimates have found that 

in 2000, there were around 400 million users of the Internet, while in 2015, there 

were around 3.2 billion users, an increase of 2.8 billion in 15 years (ITU, 2015). This 

is shown in figure 1.1 along with the proportions of the populations of developed, 

developing and least developed countries (LDCs) who have access to the Internet. 

Figure 1.1: Number of users of the Internet from 2000 to 2015 (ITU, 2015) 

 

As the Internet and the World Wide Web continue to grow and amass more users, 

there is a higher risk of criminal activity. Currently, the web is uncontrolled and 

unregulated, which allows anyone to utilise it for communication and create their own 

websites with documents, links and their own content (Albert et al., 1999). This is, in 

part, due to the lack of centralised control on the web, with no governing bodies to 

regulate content (Castillo, 2004). What this means is that it is possible for someone 

with intent to commit a crime to use an existing website or create a website to use as 

a platform for criminal activities. 

There are many types of crime committed on the Internet, ranging from viruses and 

malware to fraud and extortion. Extortion is defined as “an incident when a cyber 



EEE521 Final Year Project 2017/18  B00642761 

 

 

5 

 

 

criminal demands something of value from a victim by threatening physical or 

financial harm or the release of sensitive data” (IC3, 2017). This can include denial-

of-service (DoS) attacks, government impersonations schemes and sextortion. 

Sextortion is defined by the Internet Crime Complaint Center (IC3) as “a situation in 

which someone threatens to distribute your private and sensitive material if you don’t 

provide them images of a sexual nature, sexual favors, or money” (IC3, 2017). 

Shown in figure 1.2 are types of crime committed in the USA using the Internet as a 

platform in 2016. It should be noted, however, that this is only from reported crimes, 

meaning the actual number of victims of these crimes may be higher. 

 Figure 1.2: Types of crime in 2016 in the USA by number of victims (IC3, 2017) 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

6 

 

 

From figure 1.2, it can be seen that the most common medium used to facilitate 

crimes is social media, with 18,712 victims in 2016 (IC3, 2017). What this shows is 

that criminals would often use communication tools to commit offences. One such 

offence is human trafficking. 

There have been numerous estimates of the number of victims of human trafficking 

in the world. In 2012, there were an estimated 20.9 million victims worldwide (ILO, 

2012), while the United Nations High Commissioner for Refugees (UNHCR) 

estimated that in 2015, more than 65 million victims may exist in the world (UNODC, 

2016b). These, however, are estimates, as the number of detected victims between 

2014 and 2016 was only 21,251 (UNODC, 2016a). What this shows is that with 

current methods of detection, many victims go unnoticed. How many people become 

victims of trafficking is through the promise of a better life. Victims are told to forward 

their information to make forged documents with the promise that they will have a 

better life in a new country (Logan et al., 2009). These are simply promises, as in 

reality, the victims are often paid equivalent to the minimum standard wages in their 

countries of origin (Europol, 2017). 

As the world moves to make use of the Internet and the web in everyday lives, 

traffickers have also moved to this digital platform. Traffickers are using social media 

and web forums as online advertisements to recruit victims, and using the web to 

purchase tickets to transport the victims (McAlister, 2015). 

Due to the large proportion of victims of human trafficking who are undetected by the 

United Nations (UN), the 2015 estimated over 65 million victims (UNODC, 2016b) 

versus the 21,251 detected victims between 2014 and 2016 (UNODC, 2016a), it can 

be gathered that the current methods of detection are not able to spot victims who 

are recruited online. 

 

1.2.2 Surface Web, Deep Web and Dark Web 

The web has been estimated to be as large as 6 zettabytes in 2014, constantly 

growing larger as more content is produced (Zhao et al., 2016). As the web is a large 

collection of documents, difficulties can arise when trying to index the entire World 



EEE521 Final Year Project 2017/18  B00642761 

 

 

7 

 

 

Wide Web. Because of this, the web is generally divided into three subsections; the 

surface web, the deep web and the dark web. An analogy of an iceberg is commonly 

used when describing the web, with the surface web being the tip of the iceberg, the 

deep web being the rest of the iceberg lying underwater, and the dark web being the 

deepest part, lying within the deep web. 

The surface web consists of webpages and documents that have been or can be 

indexed by search engines. This mostly consists of unstructured HTML (Hypertext 

Markup Language) text and images, with billions of links between them (Bin et al., 

2007). Although crime can be easily detected on the surface web, platforms still exist 

selling counterfeit goods and drugs, among others, and can be found on social 

media or by using a simple search on a browser (Europol, 2017). 

The deep web, not to be confused with the dark web, consists of the largest portion 

of the web making up 96% of content on the Internet and is 500 to 550 times the size 

of the surface web, the majority of which is estimated to be stored as data in 

databases (Zhao et al., 2016). Any website that contains search queries, where a 

user sends queries to and interacts with an underlying database, is classified as the 

deep web. As search engines cannot effectively crawl through databases, this 

content is mostly hidden from users (Bin et al., 2007). What this means is that web 

crawlers used for indexing, such as a search engine, cannot crawl and index deep 

web content, as forms would need to be submitted. 

The dark web is a section of the deep web that is only accessible through the use of 

specialised software, such as The Onion Router (TOR), I2P or Freenet. These tools 

were originally to be used for protecting privacy, business activities and relationships 

by allowing users to become anonymous, however this opened the door to criminals 

(Europol, 2017). Criminals typically use the dark web for a variety of activities such 

as human trafficking, child sexual exploitation, trafficking of drugs and firearms. 

Shown in figure 1.3 is a representation of the web as an iceberg, showing the types 

of crime that are commonly found on the surface web and the dark web, or darknet. 

It can be noted that the severity of the crimes committed increases when moving 

from the surface web to the dark web. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

8 

 

 

 

Figure 1.3: Structure of the web as an iceberg (Europol, 2017) 

 

1.2.3 Web Scrapers 

As the Internet and the web continue to expand, it can become difficult to access 

webpages without knowing beforehand the address of the page. This is where 

search engines come in. Search engines use a process called web crawling, which 

is an algorithm designed to scan or crawl through a collection of websites, which is 

indexed and searched (Castillo, 2004). This algorithm has three main components; a 

webpage is fetched, it is parsed to extract all linked URLs (Uniform Resource 



EEE521 Final Year Project 2017/18  B00642761 

 

 

9 

 

 

Locator), and for previously unseen URLs, repeat the first two steps (Broder et 

al.,2003). 

A web scraper differs from a web crawler, as a web crawler simply crawls and 

indexes, while a web scraper is an automated tool that queries a web server to fetch 

a webpage, and parses the webpage to extract information (Mitchell, 2015). While a 

web crawler scans many webpages to find links, the format of those links remains 

the same, however, when using a web scraper to extract data from webpages, the 

format of the markup changes between different websites (Penman et al., 2009). 

Despite this, web scrapers are often used to access areas of a website that search 

engines cannot. For example, when looking for flights, a search engine will only find 

what the websites say on their content pages, while a web scraper can query the 

underlying databases and chart the cost of flights over time from a variety of 

websites (Mitchell, 2015). 

Due to this, web scrapers can be very useful as an investigative tool for law 

enforcement, as, in the case of human trafficking, they can be used to detect signs of 

trafficking in the recruitment stage before any exploitation takes place (McAlister, 

2015). 

 

1.2.4 Memex 

The Defense Advanced Research Projects Agency (DARPA) launched the Memex 

programme in 2014, which “seeks to develop software that advances online search 

capabilities far beyond the current state of the art” (Shen, 2014). What this means is 

that Memex is setting out to address the limitations in conventional search engines, 

such as the manual nature of searching one search term at a time and the lack of 

indexing of the deep web. 

As search engines use web crawlers to crawl through webpages and find links to 

index, Memex aims to use a web scraper to crawl through websites and store 

information. This project sets out to improve upon typical search engines, which are 

limited to the surface web, as they cannot access the deep web by submitting forms 

to gain entry to the underlying database of a website. It plans to do this by: 



EEE521 Final Year Project 2017/18  B00642761 

 

 

10 

 

 

• Develop search technologies to discover, organise and present domain-

specific content. 

• Create a domain-specific algorithm for relevant content discovery and 

organise it so that it is useful for specific tasks. 

• Extend the capabilities of searches on the deep web and multimedia content. 

• Allow military, government and commercial enterprises to easily find and 

organise publicly available content on the Internet. 

(Shen, 2014). 

While the broader goal is to apply Memex to any public domain content, the main 

target of this project is human trafficking (Shen, 2014), as the project aims to identify 

traffickers and buyers, and help victims of trafficking (Mattmann, 2015). As traffickers 

use social media, forums, advertisements, etc. to propagate the industry of modern 

slavery (Shen, 2014), an interactive interface for crawling text, images and video is 

under development, which automatically detects people and objects, to spot 

traffickers and victims, combatting the issue of human trafficking (Mattmann, 2015). 

The Memex programme, while currently in development, is a form of search engine 

with additional capabilities for the deep web and dark web, being able to access and 

extract data from databases and perform facial recognition on scraped images and 

videos. While it aims to be a general purpose web scraper, the focus of the project is 

to detect signs of human trafficking for law enforcement. 

1.2.5 Spotlight 

Thorn is an organisation dedicated to finding victims of abuse and human trafficking 

using a technology-driven approach. The Spotlight programme is designed to scrape 

the dark web to identify victims and since 2016, it identified more than 40 victims of 

child sexual abuse (Cordua, 2017). 

Spotlight is currently in use in law enforcement across all states in the USA and has 

been used to identify 6,325 victims of human trafficking and abuse; 4,345 adults and 

1,980 children, along with 2,186 traffickers. As Spotlight saves 60% of the time spent 

investigating through the use of automated workflows, it can be gathered that it is an 

efficient tool for extracting and analysing data from the dark web (Boorse, 2016). 



EEE521 Final Year Project 2017/18  B00642761 

 

 

11 

 

 

Figure 1.4 shows the number of victims and traffickers detected over 7,442 cases 

using the Spotlight web scraper between September 2015 and September 2016. 

 

Figure 1.4: Infographic showing how Spotlight was used from September 2015 to 2016 

(Boorse, 2016) 

From Spotlight’s ability to scrape the dark web in search of information relating to 

human trafficking, including anonymous peer-to-peer (P2P) networks and identifying 



EEE521 Final Year Project 2017/18  B00642761 

 

 

12 

 

 

victims who frequently change location (Thorn, 2017), it seems to be a very robust 

tool, able to scrape information that is intentionally hidden and identify those who are 

anonymous. 

 

1.2.6 Google’s Human Trafficking Group 

As Google is known for its search engine, the company has experience with web 

crawlers. Since 2014, Google has allowed victims of human trafficking to connect to 

organisations that can help with their issue through the search engine (Google, 

2017). This has expanded to the employment of technology that can identify 

trafficking networks to help with law enforcement cases (Molinari, 2017). 

One such tool is used to ban ads relating to human trafficking using automated tools, 

such as a web scraper, to detect the infringing ads (Google, 2017). This web scraper 

searches through ads on Google’s ad systems and identifies ads related to slavery 

and human trafficking based on their content and stores this information to be 

manually checked by experts for violations of Google’s ad policies (Google, 2017). 

 

1.2.7 Import.io 

Import.io is a web scraping software targeted towards businesses to gather trends 

and data. This software is a SaaS (Software as a Service) product, meaning it is 

used through a paid subscription, and allows users to extract and organise data from 

websites through the use of the interface (Import.io, 2017). Shown in figure 1.5 is a 

representation of how data can be displayed when comparing data scraped from 

hotel websites.  



EEE521 Final Year Project 2017/18  B00642761 

 

 

13 

 

 

Figure 1.5: Comparison of hotel prices between September 6th to 7th 2017 (Import.io, 2017) 

The Import.io web scraper can also be used to access the deep web, as queries to a 

database can be made and login credentials can be submitted to extract data directly 

from the underlying database of a website. This includes requesting flight ticket 

prices or images and other multimedia content (Import.io, 2017). Shown in figure 1.6 

is the interface used by Import.io to allow users to submit login credentials to scrape 

information that is hidden behind a login. 

Figure 1.6: Interface for submitting login credentials (Import.io, 2017) 

Import.io has many features for a web scraper. It can extract text and images from 

database search queries and from behind login forms. This access to the deep web 

gives the user a greater variety of options when scraping data, as it is not limited to 

the surface web like a search engine web crawler. 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

14 

 

 

1.2.8 Web Scraper (webscraper.io) 

While most web scrapers are standalone programs, Web Scraper (not to be 

confused with the term) is a browser extension for Google Chrome. This software is 

used via the developer tools on the browser and allows users to determine the 

structure of the website to be scraped and build a sitemap, telling the program how 

to traverse the website (Balodis, 2017). Figure 1.7 shows a selector graph, the visual 

representation of the sitemap, of a test ecommerce website 

(http://webscraper.io/test-sites/e-commerce/allinone), detailing the path to traverse to 

find an item’s title, price and description. 

  

Figure 1.7: Ecommerce website selector graph in Web Scraper 

After scraping the desired data from a website, Web Scraper is able to store the 

findings in a local database, saved as a CSV (Comma-Separated Values) file, or as 

a CouchDB database to be opened in the Google Chrome browser (Balodis, 2017). 

Shown is figure 1.8 is an exported CSV file detailing the data scraped from the test 

ecommerce website, the headings of which correspond to each node of the selector 

graph in figure 1.7. 

http://webscraper.io/test-sites/e-commerce/allinone


EEE521 Final Year Project 2017/18  B00642761 

 

 

15 

 

 

 Figure 1.8: Exported CSV of scraped data using Web Scraper 

While Web Scraper can be a fast and free method of extracting information from 

websites, it is limited. This limitation is the lack of deep web support, as the tool 

cannot query a database or submit login credentials, which limits the scope of the 

tool. 

 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

16 

 

 

1.3 Summary of the report 

Chapter 2 of this report draws a conclusion to the research conducted in the 

literature review in chapter 1. From this conclusion, a set of requirements are 

created, including functional, non-functional, hardware and software requirements. 

Multiple development methodologies are proposed and analysed, with the 

methodology best suited to this project being chosen. The scope of the project is 

determined and shown using a Gantt chart. Using these requirements, the system 

design and architecture are developed, including the database schema and class 

specification in chapter 3. Chapter 4 focuses on the implementation of the proposed 

designs, delivering a working spider and web application. Testing of the developed 

software is then carried out to conclude the development phase. Chapter 5 then 

reflects back on the processes involved during this project and evaluates the product 

against the specified requirements. 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

17 

 

 

2 Analysis 

Conclusions can be drawn from the research conducted in the previous chapter. 

Many crimes are committed using the Internet as a platform, one of the most 

common methods is via social media. In the USA in 2016, there were 18,712 

detected victims of crime committed using social media platforms (IC3, 2017). What 

this shows is that many crimes committed are in plain view in the surface web, 

allowing this information to be easily scraped. 

Other crimes, such as human trafficking, is more prominent in the dark web, so more 

specialised web scrapers, such as Spotlight and Memex, are used by governmental 

agencies and law enforcement agencies. As these web scrapers are for use by law 

enforcement, they are not available to the public or to anyone who requests to 

sample them, meaning very little information is known on how and where they 

operate. Due to this, more accessible options were investigated, such as Import.io 

and Web Scraper (webscraper.io), to research how web scrapers typically function. 

The findings of this indicate that it is common for web scrapers to access the deep 

web through database queries and form submission. As the vast majority of the web 

is part of the deep web, estimated to be 96% (Zhao et al., 2016), it is important for a 

web scraper to access this to be able to extract the most meaningful information. 

For the creation of the web scraper and the web application, several tools must be 

utilised. To keep all code and software produced in a safe environment with 

maximum compatibility, a virtual machine (VM) running the Ubuntu 16.04.3 

distribution of Linux. This VM is used for portability so that when moving between 

machines, the VM box can be copied and transferred to the new machine. For the 

creation of the web scraper and the web application, Python 3.6.3 will be used, with 

Scrapy 1.4 for the web scraper, and Flask 0.12.2 and Twitter Bootstrap v4.0 for the 

web application. The latest stable releases of each language and software will be 

used to ensure code will be up to date and will not be deprecated in the foreseeable 

future. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

18 

 

 

Based on the research conducted in the previous chapter, requirements can be 

produced. 

The functional requirements of the project are: 

• The system should prompt the user to log in before use for confidentiality, as 

the data is sensitive. 

• The system should allow the user to enter a website to scrape. 

• The system should crawl through and extract data from the desired website. 

• The system should store data in a database with timestamps. 

• The system should allow users to access and query the database from within 

the web application. 

The non-functional requirements of the project are: 

• The system should be user friendly and easy to navigate. 

• The system should be easily maintained with minimal maintenance required. 

• The system should be scalable and work efficiently under heavy workloads. 

• The system should be easy to install and set up. 

• The handling of user and scraped data should conform to the Data Protection 

Act 1998. 

The hardware requirements of the project are: 

• A PC that is connected to a network and can be used as a server to host the 

application. 

The software requirements of the project are: 

• An Ubuntu 16.04.3 VM as a safe environment for compatibility and portability. 

• Python 3.6.3, Scrapy 1.4, Flask 0.12.2, Twitter Bootstrap v4.0 and their 

dependencies. 

• Sublime Text 3 for use in development. 

• Web browsers for testing, primarily Google Chrome, Firefox and Microsoft 

Edge. 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

19 

 

 

When planning a project, it is important to use a systems development life cycle 

(SDLC) to successfully take a project through the various stages of development: 

• Planning 

• Analysis 

• Design 

• Implementation 

• Testing 

While planning a project, there are two main SDLC methodologies available; 

waterfall and agile. 

Waterfall Methodology 

The waterfall methodology is a traditional type of SDLC that functions much like a 

waterfall when moving from one stage to the next. This greatly reduces flexibility, as 

when one stage is complete, development moves on to the next stage and rarely 

goes back. As requirements may change during a project, the waterfall method is 

unable to deal with this and must either carry on to the end or start over from the 

planning stage. Shown in figure 2.1 is the waterfall method and how it rigidly moves 

from one phase to the next. 

 

 Figure 2.1: Representation of the Waterfall Methodology 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

20 

 

 

Agile Methodology 

The agile methodology is used when the requirements may change during the 

development of a project. Projects using agile development are broken up into 

sprints, each with their own analysis, design, implementation and testing phases. 

These sprints begin with a meeting, detailing the work to be done in the sprint with 

daily meetings to keep the project on target. Essentially, this breaks the project into 

smaller segments with each segment having its own development phase, then at the 

end, the segments are combined to form the finished product. Figure 2.2 shows the 

agile method as a series of sprints with their own development life cycles. 

  

Figure 2.2: Representation of the Agile Methodology 

 

For this project, the agile methodology will be utilised. As there is no project team, 

meetings on each sprint cannot be held, however, the method of breaking down the 

project into smaller, more manageable segments will be used. This will allow the 

project to be able to adapt to any changes in the requirements. As this project 

consists of a web crawler and a web application, the agile methodology is better 

suited to handling multiple deliverables than the waterfall method. 

To keep track of development, a Gantt chart, shown in figure 2.3, has been 

developed to make sure each step of the project is on target. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

21 

 

 

  

Figure 2.3: Gantt chart showing the stages of the project   



EEE521 Final Year Project 2017/18  B00642761 

 

 

22 

 

 

3 Design 

3.1 Use Case 

 

Figure 3.1: Use case diagram of the proposed system 

Shown in figure 3.1 is the use case diagram for this proposed web application. See 

Appendix A for the use case descriptions. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

23 

 

 

3.2 System Architecture 

Figure 3.2: Architecture diagram of the proposed system 

Shown in figure 3.2 is the architecture diagram for the proposed web scraping 

system. Due to the need for a user to be authenticated before accessing the web 

application, a layered architecture was chosen, as each layer can only communicate 

with the layer one above or below. This means that the core functionality of the web 

application can take place close to the database after authentication, as the 

application makes use of information stored in the database for all aspects of the 

application services layer. 

As authentication is a must for a system dealing with highly sensitive information, i.e. 

human trafficking, the application services can only be accessed after authentication 

takes place. 

Within the application services layer, there are two types of services; services writing 

to the database, and services reading from the database. 

 Web Browser 

Sign in/authentication 

Select target website 

Run spider 

View report 

Advanced search 

Database    

User interface 

Authentication 

Application 

services 

System storage 



EEE521 Final Year Project 2017/18  B00642761 

 

 

24 

 

 

The services writing to the database are those that interact with the spider, as it 

scrapes a user specified website and stores any findings in the database. The 

services reading from the database are those that generate reports from the stored 

findings of the spider. This includes a generic report with all information displayed, 

and custom reports generated by a search query. 

The spider itself has a documented architecture, as scraping websites has a set of 

required steps for getting and parsing the data found online. The architecture of a 

Scrapy spider along with a description of the data flow is shown in figure 3.3. 

Figure 3.3: Architecture of Scrapy spiders (Scrapy, 2017) 



EEE521 Final Year Project 2017/18  B00642761 

 

 

25 

 

 

3.3 Website Design 

 

Figure 3.4: Sitemap of the proposed system 

Users must first sign in to the application before use, as the information this system 

deals with is sensitive. Once the user has signed in, they are taken to the index, or 

main, page, where there is a field to enter the website the user wishes to scrape and 

a navigation bar at the top of the page, which allows users to access the other pages 

in the application. If the user chooses to scrape a website, the spider is initialised 

and the application prompts the user that the target website is being scraped. Once 

this is finished, a report is generated, showing any possible occurrence of human 

trafficking related messages. The user may also query the database and generate a 

custom report using the advanced search feature. This allows the user to search for 

specific terms, such as a particular buzzword, an author, a target website, or the 

date of capture. 

Shown in figures 3.5 to 3.10 are screenshots of the web application, tentatively 

named “Spyder”. Figure 3.5 shows the sign in page with text fields for the user to 

enter a username and password. Figure 3.6 shows the index, or main, page, which 

has a field to enter the target website to scrape and a submit button to launch the 

spider. The web application displays a message as the spider scrapes this website, 



EEE521 Final Year Project 2017/18  B00642761 

 

 

26 

 

 

shown in figure 3.7. Shown in figure 3.8 is the general report that is generated after a 

spider is finished scraping and by generating a report without searching. Figures 3.9 

and 3.10 show the advanced search and the report generated from this search 

respectively. The user can search for a specific buzzword, author, date, or website, 

and the corresponding report for this query will be generated. 

  

Figure 3.5: Sign in page 

  

Figure 3.6: Index page 

  

Figure 3.7: Message displayed when the spider scrapes a website  



EEE521 Final Year Project 2017/18  B00642761 

 

 

27 

 

 

 Figure 3.8: General report 

   

Figure 3.9: Advanced search page 

 Figure 3.10: Custom report 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

28 

 

 

3.4 Database Schema 

  

Figure 3.11: Database schema of the proposed system 

Shown in figure 3.11 is the database schema of the proposed system. In the 

database, there are three tables: Buzzwords, Catches, and User. These tables are 

enough to meet all the requirements of the application. 

Buzzwords contains each of the buzzwords being used by the spider to compare to 

the messages within a website to see if there is a match. 

Catches contains the possible occurrences of human trafficking-related messages 

the spider finds as it crawls through a website. The catch_id field uniquely identifies 

the possible occurrence. The message and the author of said message is stored, so 

that a human may assess the possible occurrence of human trafficking by viewing 

the message using database queries. The buzzword is stored as this would assist in 

assessing the severity of the stored message by showing what word or words the 

spider flagged up. For archival purposes, the date, time and website are stored, 

allowing the user to search for any possible occurrences of human trafficking from a 

particular website or a certain date. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

29 

 

 

User contains the username, password and salt corresponding to a user to gain 

access to the application. The username is stored as text, however, the password is 

stored as a hashed value made up of the plaintext password and the salt, and is 

hashed using the SHA-256 hash function. This increases security, allowing the 

hashed password to be stored safely in the database, and is a safeguard against any 

attackers attempting to gain access to the application. The salt is a randomly 

generated string to assist in the hashing of the password. This is stored in the 

database because when a user attempts to sign in, the user-entered password is 

combined with the salt, hashed with the same SHA-256 hash function and compared 

to the stored password hash. 

This database schema is in third normal form (3NF), as there are no repeating 

groups, and each element in each table is dependent on the primary key of that 

table. 

 

3.5 Class Specification 

Figure 3.12: Class diagram of the proposed system 



EEE521 Final Year Project 2017/18  B00642761 

 

 

30 

 

 

The class diagram for the proposed system is shown in figure 3.12. While the 

database schema, and therefore variables, has already been identified, the Catches 

and Buzzwords classes have a serialize(self) method. This method allows the data 

to be serialized, allowing the data to be accessed and displayed by the web 

application. 

The App class deals with the running and directing of the web application. The 

main() method relates to the index, or main, page and deals with routing to the 

index.html page, and redirecting to the spider(url) method when a Universe 

Resource Locator (URL) to scrape is submitted by the user. This spider(url) method 

uses the URL parameter to run the corresponding spider and display a message to 

the user, telling them that the spider is running. The report() method renders the 

report.html page with a query to display on the page. This query fetches all entries in 

the Catches table of the database. The advancedSearch() method renders the 

advanced search to allow users to generate a query to display as a report in the 

advancedReport(table,field,param) method. This method reuses the report.html 

page, passing in the user-specified search query and generating the corresponding 

report. The signin() method allows users to sign in to the application and, if 

successful, creates a session for the authenticated user. When the user attempts to 

sign in, the validate(username,password) method is called, which checks to see if 

the credentials are valid and correspond to those in the database. While doing this, 

the checkPassword(hashed_password,user_password,salt) method is called. This 

method uses the same SHA-256 hash function and salt to compare the hash, or 

digest, of the user-entered password with the hashed password stored in the 

database. The signout() method deletes the user session, signing the user out. The 

before_request() method is a Flask method that is called before a page is accessed 

to ensure that a user session is active. 

In this class diagram, there are two spiders; one for reddit.com, and another for 

4chan.org. This is due to the way Scrapy works, as the class names of HTML 

elements are generally unique to a website, meaning that a spider will work for one 

website and not for another. Due to this, multiple spiders are required for a web 

scraper dealing with multiple websites, however the structure of each spider remains 



EEE521 Final Year Project 2017/18  B00642761 

 

 

31 

 

 

the same. The name variable exists to give the spider a name so that it can be 

accessed using this name from the command line or application. The 

start_requests(self) method gets the URL to scrape and runs the request. The 

parse(self,response) method finds the required information located in the desired 

website and compares each message to the buzzwords stored in the database. If a 

buzzword is found in a message, the message, the author, the buzzword, the date 

and time of capture, and the website URL are stored in the Catches table of the 

database. 

 

 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

32 

 

 

4 Implementation and Testing  

4.1 Development Approach 

The approach taken during the development of the web application was an 

incremental one. In this approach each segment was completed before moving on to 

another. The first segment was building the first spider, focusing on a local page 

taken from reddit.com, where an understanding of how Scrapy works was gained. 

After this, the database was developed, and the spider was adapted to write its 

findings to the database. Once this was completed, work began on the web 

application, where Flask was set up and the first webpages were made; index.html 

and layout.html. The layout page is a page that never loads by itself, as it provides 

the layout of the parts of the webpages that do not change between pages. An 

example of this is the menu, or navbar, at the top of each page, which remains 

constant no matter which page the application loads. After this, the spider(url) 

method was created to allow the spider to be activated from within the web 

application. The report.html page was then created to display the findings of the 

spider in an easy-to-read fashion. A second spider was then created, this time 

targeted towards a local page taken from 4chan.org. Lastly, the advanced search 

was developed to allow a user to send queries to the database and generate custom 

reports. 

The tools and languages used to develop this system were as follows: 

• Backend: Python and its libraries; Scrapy, Flask and SQLAlchemy 

• Frontend: HTML, CSS, jQuery, and Twitter Bootstrap 

These technologies were chosen for two reasons. The first is due to already having 

experience in using these languages and libraries for developing web applications, 

with the exception of the Scrapy library, and the second is that Scrapy is a Python 

library, so the application also had to be built using Python. 

As Scrapy was the only unfamiliar tool, time was spent learning how to use the 

framework at the beginning of development before any work began on the other, 

more familiar components. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

33 

 

 

4.2 Implementation 

4.2.1 Database 

The database, called scrape.db, was developed using SQLAlchemy, an object-

relational mapper, ORM, in Python. This uses classes to create database tables, as 

shown with the Buzzwords class below. 

 

This creates a table in the database called “buzzwords”, with a “word” column being 

the primary key and only field. The serialise(self) method allows the data to be 

accessed and displayed by the web application. 

The Catches class creates a table in the database containing a catch_id as the 

primary key, a scraped message, the author, the buzzword as a foreign key to the 

Buzzwords class, or table, the catchdate, and the website. 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

34 

 

 

The catchdate field is stored as a Text field rather than a DateTime because a format 

of “YYYY-MM-DD hh-mm-ss” was desired and DateTime fields can cause issues 

when attempting to display the field in a web application. 

The User class creates a table with a username, password and salt. This class does 

not require a serialise method, as user information will not be displayed at any point 

in the application for security concerns. 

 

The database is populated with buzzwords prior to use to ensure that the spiders 

can function as intended. 

 

A list of words relating to sex trafficking is created. This list is then looped through 

and each individual word, or phrase, is added to the Buzzwords table. 

A user is then created with the username “admin” and the password “admin123”. A 

random 8-byte string is create for use as a salt. The password is then combined with 

the salt and they are hashed using the SHA-256 hash function. This is then stored as 

the password for the user and the record is added to the database. 

 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

35 

 

 

4.2.2 Spider 

The spiders for this application were developed using Scrapy, a Python framework 

for scraping websites. Within the Spider class, the start_requests(self) method is 

automatically called. This method begins the request by passing a URL and calling 

the parse(self,response) method. 

 

 

The parse(self,response) method uses the class names of div elements in a 

webpage to find the comments people have sent. A list of buzzwords is created 

using the buzzwords stored in the database. These words are then looped through 

and a nested loop is made to go through each comment, extract the message and 

compare to the buzzword. If the buzzword is found in the message, it is stored in the 

database along with the author of that comment, the buzzword, the date and time of 

capture, and the website. In the 4chan spider, the author number (post ID) is also 

extracted, as most of the authors of comments are anonymous, so this number can 

uniquely identify the author of a comment. 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

36 

 

 

 

 

4.2.3 Web Application 

The web application was developed using the Flask framework for Python in the 

backend, and HTML pages in the frontend. For all HTML pages, see Appendix B. 

The main() method renders the index.html page if the user is signed in. The route is 

the path in the URL bar of a browser. For example, to reach the index page, 

“localhost:5000/” is entered, and to reach the sign in page, “localhost:5000/signin/” is 

entered. 

 

This method checks to see if a user is signed in by looking for an active session. If 

the user submits the form on the index.html page, the entered website is sent to the 

spider to be scraped. Shown below is the index.html page. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

37 

 

 

 

The spider(url) method handles the execution of the spiders. Due to the limitations 

with Scrapy spiders discussed previously, separate spiders are used, therefore, 

there are checks to see what URL was entered and the corresponding spider is 

executed. 

 

Shown below is the spider.html page displaying a message to the user, telling them 

that the spider is active. 

 

The report() method returns all Catches and displays them in a table in the 

report.html page. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

38 

 

 

 

Shown below is the general report generated in report.html by this method. 

 

The advancedSearch() method allows users to search the database for specific 

terms. Due to this, the method gets the values in the webform in the advanced.html 

page, and passes them as parameters into the advanceReport(table,field,param) 

method. 

 

Shown below is the advanced.html page with fields allowing the user to enter data to 

create custom reports. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

39 

 

 

 

The advancedReport(table,field,param) method uses the parameters received from 

the advancedSearch() method to generate a custom query. The results of this query 

are then added to a dictionary, which is then passed into the report.html page for 

display. 

 

Shown below is the custom report generated in report.html by this method. 

 

The signin() method deals with the authentication of a user. The entered username 

and password is checked for validity in the validate(username,password) method by 

comparing the entered username to the username stored in the database. To check 

the password, the check_password(hashed_password,user_password,salt) method 



EEE521 Final Year Project 2017/18  B00642761 

 

 

40 

 

 

is called, which uses a SHA-256 hash function to generate a digest and compare it 

with the password digest in the database. If the check is unsuccessful, an error 

message is passed into the signin.html page to be displayed. 

 

Shown below is the signin.html page, first with no error message, then with the error 

message displayed during a failed sign in attempt. 

 

The signout() method deletes the active user session, signing the user out of the 

application. 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

41 

 

 

The before_request() method is a Flask method that is called before each request 

and checks to see if there is an active session. 

 

 

4.3 Testing 

For testing this web application, unit testing was carried out using Python’s included 

unit testing framework. 

To begin testing a Flask web application, a setup(self) method and a teardown(self) 

must be created. The setup(self) method creates the necessary connections to the 

database and sets configurations for use in automated testing. The teardown(self) 

method closes these connections and unlinks from the database. 

 

The first test focuses on user authentication. Three sets of usernames and 

passwords are tested: 

• admin, admin123 (valid, valid) 

• adminx, admin123 (invalid, valid) 

• admin, default (valid, invalid) 

These credentials are then passed into the signin() method to check for validity. The 

rv.data calls look for text in the rendered webpages. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

42 

 

 

 

The second test signs the user out and attempts to access the main() method, 

asserting that the signin.html page should open instead. The test then signs the user 

in with valid credentials and attempts to access the main() method, asserting that 

text from the index.html page should be returned. 

 

The third test signs the user out and attempts to access the spider, asserting that the 

signin.html page should open instead. The test then signs the user in with valid 

credentials and passes three URLs into the spider(url) method: 

• reddit.com (valid) 

• 4chan.org (valid) 

• invalidsite.com (invalid) 

The first two should execute the corresponding spiders, while the third should not 

execute any spider and should redirect to the index.html page. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

43 

 

 

 

The fourth test attempts to access the report() method to generate a report, first 

while signed out, then while signed in with valid credentials. While signed out, the 

signin.html page should open, and while signed in, the report.html page should open. 

 

The fifth test signs the user out and attempts to access the 

advancedReport(table,field,param) method, and asserts that the signin.html page 

should open. The test then signs the user in with valid credentials and the report.html 

page should open. 

 

 

 

 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

44 

 

 

After running the test script, each test passed in 5.039 seconds with no failed tests. 

 

These tests show that the developed product works as intended. 

 

5 Evaluation and Reflection  

5.1 Evaluation 

In chapter 2 of this report, several functional and non-functional requirements were 

addressed. Reviewing these requirements shows how close the project stayed to the 

original plan and if it met those requirements. Shown in tables 5.1 and 5.2 are the 

comparisons with the functional and non-functional requirements respectively. 

Table 5.1: Evaluation of functional requirements 

Functional Requirement Requirement Met? Comment 

The system should prompt 

the user to log in before 

use for confidentiality, as 

the data is sensitive. 

Yes Each page of the 

application checks to see 

if the user is signed in. if 

not, the user is redirected 

to the sign in page. 

The system should allow 

the user to enter a website 

to scrape. 

Yes The index, or main, page 

contains a field for the 

user to enter a target 

website to scrape. 

The system should crawl 

through and extract data 

from the desired website. 

Yes The target website is 

crawled through and 

information relating to 



EEE521 Final Year Project 2017/18  B00642761 

 

 

45 

 

 

human trafficking is 

extracted. 

The system should store 

data in a database with 

timestamps. 

Yes The extracted data is 

stored along with the date 

and time of capture. 

The system should allow 

users to access and query 

the database from within 

the web application. 

Yes Users can perform an 

advanced search, creating 

a custom query, which 

then creates a custom 

report. 

 

Table 5.2: Evaluation of non-functional requirements 

Non-Functional 

Requirement 

Requirement Met? Comment 

The system should be 

user friendly and easy to 

navigate. 

Yes The navbar at the top of 

each page can be used to 

access all pages within the 

system. 

The system should be 

easily maintained with 

minimal maintenance 

required. 

Yes All components can be 

modified without shutting 

down the web application, 

so there is no downtime. 

The system should be 

scalable and work 

efficiently under heavy 

workloads. 

Yes As Flask is a templating 

engine, more templates or 

pages can be added very 

easily and new spiders 



EEE521 Final Year Project 2017/18  B00642761 

 

 

46 

 

 

can be created. 

The system should be 

easy to install and set up. 

Yes After installing the 

dependencies, Python, 

Flask, Scrapy, etc., the 

entire system can run from 

one command; “python 

app.py”. 

The handling of user and 

scraped data should 

conform to the Data 

Protection Act 1998. 

Yes All data is treated as 

confidential and can only 

be accessed after login. 

 

Although all test cases passed, and every requirement has been met, the system 

could still be improved. One such improvement would be to minimise false-positives. 

The spiders found comments unrelated to human trafficking and extracted them, due 

to a match with the buzzwords. The matches buzzwords are generic words, such as 

“stable”, “force, “trick”, “john”, etc. This leads to many false-positives, as the spiders 

do not rely on the context of the words. This leaves three options for future 

improvements: 

• Remove the generic words 

• Let a human read through an assess the findings 

• Let an AI (artificial intelligence), that knows context, read through and make 

decisions on the findings 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

47 

 

 

5.2 Reflection 

Over the course of the project, knowledge about web scrapers has been gained, and 

using this knowledge, a number of things could be done differently if faced with this 

project again. 

Although, at its core, the project did not deviate from the original plan, due to the 

spiders being specifically targeted to one site each, the choice of websites to target 

was highly limited. If faced with this problem again, an attempt to create a ‘general 

purpose’ spider would be made. This type of spider would need to intelligently find 

which HTML elements and classes contain the required information. This, however, 

is beyond the scope of this project. 

With more time and added scope to the project, an intelligent system could be 

created to determine the context of the scraped messages to reduce the number of 

false-positives in the findings. Due to the sensitive nature of the topic of this project, 

human trafficking, all scraping had to be performed on local webpages rather than 

online websites. With the backing of law enforcement agencies, spiders could be 

made to scrape website on an online domain and be allowed to follow links 

recursively. 

5.3 Conclusions 

While this project may not be as sophisticated as web scrapers made by large 

corporations, there is enough scope in this application to make a significant impact in 

the world of law enforcement. By utilising a set of buzzwords relating to sex 

trafficking and a spider targeted towards the right website, many trafficking crimes 

could be discovered in a matter of seconds, as the spiders in this project crawled 

through large webpages in under 5 seconds. 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

48 

 

 

6 References 

Albert, R., Jeong, H. and Barabási, A. (1999) Internet: Diameter of the world-wide web, Nature, 
401(6749), pp. 130-131. doi: 10.1038/43601.  

Balodis, M. (2017) Web Scraper. Available at: http://webscraper.io/ (Accessed: 02/11/17).  

Bin, H., Patel, M. and Zhen, Z. (2007) Accessing the Deep Web: a survey, Communications of the 

ACM, 50(5), pp. 94-101.  

Boorse, K. (2016) Spotlight Helps Law Enforcement Identify Victims of Sex Trafficking Faster. 

Available at: https://www.wearethorn.org/blog/spotlight-helps-identify-sex-trafficking-victims-

faster/ (Accessed: 29/10/17).  

Broder, A.Z., Najork, M. and Wiener, J.L. (2003) Efficient URL caching for world wide web crawling. 

, Budapest, Hungary. 20-24 May 2003. New York, NY, USA: ACM, pp. 679.  

Castillo, C. (2004) Effective Web Crawling. Ph.D. in Computer Science. University of Chile.  

Cordua, J. (2017) Clarity & Focus in 2017. Available at: https://www.wearethorn.org/blog/clarity-
and-focus-2017/ (Accessed: 29/10/17).  

Europol (2017) SERIOUS AND ORGANISED CRIME THREAT ASSESSMENT Crime in the age of 
technologyEuropol. Available at: 

https://www.europol.europa.eu/sites/default/files/documents/socta2017_0.pdf (Accessed: 
02/11/2017).  

Google (2017) Fighting Human Trafficking & Modern Day Slavery. Available at: 

https://www.blog.google/documents/4/Fighting%20Human%20Trafficking%20and%20Modern%2
0Day%20Slavery.pdf (Accessed: 06/11/17).  

IC3 (2017) 2016 Internet Crime Report Available at: https://pdf.ic3.gov/2016_IC3Report.pdf 
(Accessed: 19/11/2017).  

ILO (2012) ILO 2012 Global estimate of forced labour Executive summary Available at: 
http://www.ilo.org/wcmsp5/groups/public/---ed_norm/---
declaration/documents/publication/wcms_181953.pdf (Accessed: 02/11/2017).  

Import.io (2017) Import.io | Extract data from the web. Available at: https://www.import.io/ 
(Accessed: 06/11/17).  

ITU (2015) ICT Facts and Figures 2015 
. Geneva: International Telecommunication Union. Available at: http://www.itu.int/en/ITU-
D/Statistics/Documents/facts/ICTFactsFigures2015.pdf (Accessed: 07/11/17).  

Logan, T.K., Walker, R. and Hunt, G. (2009) Understanding Human Trafficking in the United 
States, Trauma, Violence, & Abuse, 10(1), pp. 3-30. doi: 10.1177/1524838008327262.  

Madhusudan, P.A. and Lambhate Poonam, D. (2017) Deep Web Crawling Efficiently using Dynamic 
Focused Web Crawler, International Research Journal of Engineering and Technology (IRJET), 
04(06), pp. 3303.  

Mattmann, C. (2015) Search of the Deep and Dark Web via DARPA Memex 
(abstract).  

http://webscraper.io/
https://www.wearethorn.org/blog/spotlight-helps-identify-sex-trafficking-victims-faster/
https://www.wearethorn.org/blog/spotlight-helps-identify-sex-trafficking-victims-faster/
https://www.wearethorn.org/blog/clarity-and-focus-2017/
https://www.wearethorn.org/blog/clarity-and-focus-2017/
https://www.europol.europa.eu/sites/default/files/documents/socta2017_0.pdf
https://www.blog.google/documents/4/Fighting%20Human%20Trafficking%20and%20Modern%20Day%20Slavery.pdf
https://www.blog.google/documents/4/Fighting%20Human%20Trafficking%20and%20Modern%20Day%20Slavery.pdf
https://pdf.ic3.gov/2016_IC3Report.pdf
http://www.ilo.org/wcmsp5/groups/public/---ed_norm/---declaration/documents/publication/wcms_181953.pdf
http://www.ilo.org/wcmsp5/groups/public/---ed_norm/---declaration/documents/publication/wcms_181953.pdf
https://www.import.io/
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf


EEE521 Final Year Project 2017/18  B00642761 

 

 

49 

 

 

McAlister, R. (2015) Webscraping As an Investigation Tool to Identify Potential Human Trafficking 
Operations in Romania. , Oxford, United Kingdom. 28-01 July 2015. New York, NY, USA: ACM, pp. 
2.  

Mitchell, R. (2015) Web scraping with Python: collecting data from the modern web. O'Reilly 
Media, Inc.  

Molinari, S. (2017) Google's fight against human trafficking. Available at: 
https://www.blog.google/topics/public-policy/googles-fight-against-human-trafficking/ (Accessed: 
06/11/17).  

Palme, J. and Berglund, M. (2004) Anonymity on the Internet, .  

Penman, R.B., Baldwin, T. and Martinez, D. (2009) Web Scraping Made Simple with SiteScraper, .  

Scrapy (2017) Architecture overview. Available 
at: https://doc.scrapy.org/en/1.5/topics/architecture.html (Accessed: 24/04/18). 

Shen, W. (2014) Memex. Available at: https://www.darpa.mil/program/memex (Accessed: 
01/11/2017).  

Thorn (2017) Spotlight: Human Trafficking Intelligence and Leads. Available at: 
https://www.wearethorn.org/spotlight/ (Accessed: 29/10/17).  

UNODC (2016) Detected victims of trafficking in persons, by age and by sex - 2014 or more recent 
United Nations publication.  

UNODC (2016) Global Report on Trafficking in Persons 2016United Nations publication. Available 

at: http://www.unodc.org/documents/data-and-
analysis/glotip/2016_Global_Report_on_Trafficking_in_Persons.pdf (Accessed: 30/10/2017).  

Zhao, F., Zhou, J., Nie, C., Huang, H. and Jin, H. (2016) SmartCrawler: A Two-stage Crawler for 

Efficiently Harvesting Deep-Web Interfaces, IEEE transactions on services computing, 9(4), pp. 

608-620. doi: 10.1109/TSC.2015.2414931. 

  

https://www.blog.google/topics/public-policy/googles-fight-against-human-trafficking/
https://doc.scrapy.org/en/1.5/topics/architecture.html
https://www.darpa.mil/program/memex
https://www.wearethorn.org/spotlight/
http://www.unodc.org/documents/data-and-analysis/glotip/2016_Global_Report_on_Trafficking_in_Persons.pdf
http://www.unodc.org/documents/data-and-analysis/glotip/2016_Global_Report_on_Trafficking_in_Persons.pdf


EEE521 Final Year Project 2017/18  B00642761 

 

 

50 

 

 

7 Appendices 

7.1 Appendix A Use Case Descriptions  

Sign in 

Actors User 

Description Allows a user to access the web application. 

Data Username, password 

Stimulus Command issued by student 

Response The user’s signin details are checked for authentication. 

Comments  

 

Authenticate signin 

Actors User 

Description Checks to see if a user’s signin details are valid. 

Data Username, password 

Stimulus Signin details 

Response If successful, the user is authenticated. If unsuccessful, the user is 

rejected. 

Comments  

 

View report 

Actors User 

Description Messages found by the spider to be a potential occurrence of 

human trafficking is displayed with related information from the 

scraped website. 



EEE521 Final Year Project 2017/18  B00642761 

 

 

51 

 

 

Data Buzzword, message, author, date and time, website 

Stimulus Command issued by user, advanced search query 

Response Report is displayed. 

Comments  

 

Advanced search 

Actors User 

Description Allows a user to search for a specific term, author, date or website 

stored in the database. 

Data Buzzword, author, date and time, website 

Stimulus Command issued by user 

Response Custom report is displayed. 

Comments  

 

Select target website 

Actors User 

Description Allows a user to enter a webpage to send to the spider. 

Data Website 

Stimulus Command issued by user 

Response Webpage is sent to the spider. 

Comments  

 

Scrape website 

Actors Spider 



EEE521 Final Year Project 2017/18  B00642761 

 

 

52 

 

 

Description Webpage is crawled through by the spider and information is 

scraped if a possible occurrence of human trafficking has been 

detected. 

Data Website, buzzwords 

Stimulus Select target website 

Response Spider crawls and scrapes the target website. 

Comments  

 

Store possible occurrences 

Actors Spider 

Description If a message is scraped by the spider, it is stored in the database. 

Data Buzzword, message, author, date and time, website 

Stimulus Scrape website 

Response Database is updated. 

Comments  

 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

53 

 

 

7.2 Appendix B Code 

dbsetup.py 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

import sys 

from sqlalchemy import Column, ForeignKey, Integer, String, Text, LargeBinary, 
Boolean, Date 

from sqlalchemy.ext.declarative import declarative_base 

from sqlalchemy.orm import relationship 

from sqlalchemy import create_engine 

 

Base = declarative_base() 

 

class Buzzwords(Base): 

    __tablename__ = 'buzzwords' 

 

    word = Column(Text, primary_key = True) 

 

    @property 

    def serialise(self): 

        return { 

            'word': self.word 

        } 

 

 

class Catches(Base): 

    __tablename__ = 'catches' 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

54 

 

 

    catch_id = Column(Integer, primary_key = True) 

    message = Column(Text) 

    author = Column(Text) 

    word = Column(Text, ForeignKey('buzzwords.word')) 

    buzzwords = relationship(Buzzwords) 

    catchdate = Column(Text) 

    website = Column(Text) 

 

    @property 

    def serialise(self): 

        return { 

            'catch_id': self.catch_id, 

            'message': self.message, 

            'author': self.author, 

            'word': self.word, 

            'catchdate': self.catchdate, 

            'website': self.website 

        } 

 

 

class User(Base): 

    __tablename__ = 'user' 

 

    username = Column(String(20), primary_key = True) 

    password = Column(String(20), nullable = False) 

    salt = Column(LargeBinary) 

 

engine = create_engine('sqlite:///scrape.db', encoding='utf-8') 



EEE521 Final Year Project 2017/18  B00642761 

 

 

55 

 

 

Base.metadata.create_all(engine) 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

56 

 

 

dbinsert.py 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

from sqlalchemy import create_engine 

from sqlalchemy.orm import sessionmaker 

from dbsetup import * 

import hashlib 

from os import urandom 

import datetime 

 

engine = create_engine('sqlite:///scrape.db') 

Base.metadata.bind = engine 

DBSession = sessionmaker(bind=engine) 

session = DBSession() 

 

words = ['automatic', 'bottom', 'bottom bitch', 'branding', 'caught a case', 
'choosing up', 'circuit', 'coercion', 'commercial sex act', 'cousin-in-law', 
'cousin in law', 'daddy', 'date', 'exit fee', 'facilitaor', 'family', 'folks', 
'finesse pimp', 'romeo pimp', 'force', 'fraud', 'gorilla pimp', 'guerilla pimp', 
'head cut', 'human smuggling', 'human traffick', 'in-pocket', 'in pocket', 'john', 
'trick', 'kiddie stroll', 'loose bitch', 'lot lizard', 'madam', 'out of pocket', 
'pimp', 'pimp circle', 'pimp partner', 'quota', 'eyeballing', 'renegade', 
'seasoning', 'serving a pimp', 'squaring up', 'stable', 'the game', 'the life', 
'track', 'stroll', 'blade', 'trade up', 'trade down', 'traficker', 'turn out', 
'the wire', 'wifey', 'wife-in-law', 'wife in law', 'sister wife'] 

 

for word in words: 

 buzz = Buzzwords(word=word) 

 session.add(buzz) 

 session.commit() 

 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

57 

 

 

password = b"admin123" 

salt = urandom(8) 

hash_object = hashlib.sha256(password.encode() + salt) 

admin = User(username=u"admin", password=hash_object.hexdigest(), salt=salt) 

session.add(admin) 

session.commit() 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

58 

 

 

reddit.py 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

import scrapy 

from sqlalchemy import create_engine, and_, text 

from sqlalchemy.orm import sessionmaker, exc 

from dbsetup import * 

import datetime 

 

engine = create_engine('sqlite:///scrape.db') 

Base.metadata.bind = engine 

DBSession = sessionmaker(bind = engine) 

dbsession = DBSession() 

 

class Spider(scrapy.Spider): 

 name = "reddit" 

 

 def start_requests(self): 

  url = 'file:///home/evan/Documents/reddit1.html' 

  yield scrapy.Request(url=url, callback=self.parse) 

 

 

# overall -> <div class="thing ... noncollapsed comment"> 

# catch_id -> automatic 

# message -> <div class="md"><p> 

# author -> <a class="author may-blank ...">" 

# catchdate -> datetime.now 

# website -> htpps://www.reddit.com 



EEE521 Final Year Project 2017/18  B00642761 

 

 

59 

 

 

 

 

 

 def parse(self, response): 

  count = 0 

 

  comments = response.css(".thing.noncollapsed.comment") 

  words = [w.word for w in dbsession.query(Buzzwords.word)] # get list 
of buzzwords 

  for word in words: 

   for comment in comments: 

    message = 
comment.css(".md").xpath('./p/text()').extract_first() 

    if word in message.lower(): # if buzzword is found 

     author = 
comment.css("a.author::text").extract_first() 

     # add to database 

     new_catch = Catches(message=message, 
author=author, word=word, catchdate=datetime.datetime.now().strftime("%Y-%m-%d %H-
%M-%S"), website=u"https://www.reddit.com") 

     dbsession.add(new_catch) 

     dbsession.commit() 

     count+=1 

 

  self.log('Finished scraping. Found {0} possible 
occurrences'.format(count)) 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

60 

 

 

4chan.py 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

import scrapy 

from sqlalchemy import create_engine, and_, text 

from sqlalchemy.orm import sessionmaker, exc 

from dbsetup import * 

import datetime 

 

engine = create_engine('sqlite:///scrape.db') 

Base.metadata.bind = engine 

DBSession = sessionmaker(bind = engine) 

dbsession = DBSession() 

 

class Spider(scrapy.Spider): 

 name = "4chan" 

 

 def start_requests(self): 

  url = 'file:///home/evan/Documents/4chan.html' 

  yield scrapy.Request(url=url, callback=self.parse) 

 

 

# overall -> <div class="postContainer"> 

# catch_id -> automatic 

# message -> <blockquote> 

# author -> <span class="name">" 

# catchdate -> datetime.now 

# website -> htpp://www.4chan.org 



EEE521 Final Year Project 2017/18  B00642761 

 

 

61 

 

 

 

 

 def parse(self, response): 

  count = 0 

 

  comments = response.css(".postContainer") # gets both OP and replies 

  words = [w.word for w in dbsession.query(Buzzwords.word)] # get list 
of buzzwords 

  for word in words: 

   for comment in comments: 

    message = 
comment.css(".post").xpath('./blockquote/text()').extract_first() # extract 
comment 

    if message == None: 

     message = "" 

    if word in message.lower(): # if buzzword is found 

     authorName = 
comment.css("span.name::text").extract_first() 

     authorNo = comment.css('a[title="Reply to this 
post"]::text').extract_first() 

     author = authorName+" "+authorNo 

     # add to database 

     new_catch = Catches(message=message, 
author=author, word=word, catchdate=datetime.datetime.now().strftime("%Y-%m-%d %H-
%M-%S"), website=u"http://www.4chan.org") 

     dbsession.add(new_catch) 

     dbsession.commit() 

     count+=1 

 

  self.log('Finished scraping. Found {0} possible 
occurrences'.format(count)) 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

62 

 

 

app.py 

from flask import Flask, render_template, request, redirect, url_for, jsonify, 
json, Response, session, g, flash, request, make_response 

from sqlalchemy import create_engine, and_, text 

from sqlalchemy.orm import sessionmaker, exc 

from dbsetup import * 

from werkzeug.exceptions import abort 

import hashlib 

import codecs 

import re 

from spiders import reddit 

from twisted.internet import reactor 

import scrapy 

from scrapy.crawler import CrawlerRunner 

import os 

 

app = Flask(__name__) 

 

# initialise the database 

engine = create_engine('sqlite:///scrape.db') 

Base.metadata.bind = engine 

DBSession = sessionmaker(bind = engine) 

dbsession = DBSession() 

 

 

# open the index page 

@app.route('/', methods=['GET', 'POST']) 

def main(): 



EEE521 Final Year Project 2017/18  B00642761 

 

 

63 

 

 

 if g.user: # check for user session 

  if request.method == 'POST': # webform submission 

   url = request.form['site'] 

   url = url.replace("/", "%2f") 

   return redirect(url_for('spider', url=url)) # run the spider 

  return render_template('index.html') 

 return redirect(url_for('signin')) 

 

# run the spider 

@app.route('/run-spider/<url>') 

def spider(url): 

 if g.user: # check for user session 

  if 'reddit' in url: 

   os.system('scrapy crawl reddit') # run command 

  elif '4chan' in url: 

   os.system('scrapy crawl 4chan') 

  else: 

   return redirect(url_for('main')) 

  # ...and so on... 

  return render_template('spider.html') 

 return redirect(url_for('signin')) 

 

# display report 

@app.route('/report/') 

def report(): 

 if g.user: # check for user session 

  query = dbsession.query(Catches) 



EEE521 Final Year Project 2017/18  B00642761 

 

 

64 

 

 

  return render_template('report.html', query=([catch.serialise for 
catch in query])) 

 return redirect(url_for('signin')) 

 

# generate dynamic query 

@app.route('/report/search/', methods=['GET', 'POST']) 

def advancedSearch(): 

 if g.user: # check for user session 

  if request.method == 'POST': 

   if request.form['field']: 

    field = request.form['field'] 

   if request.form['param']: 

    param = request.form['param'] 

    param = param.replace("/", "%2f") 

   elif not request.form['param']: 

    param = "%" 

   return redirect(url_for('advancedReport', table="catches", 
field=field, param=param)) 

  return render_template('advanced.html') 

 return redirect(url_for('signin')) 

 

# generate dynamic query 

@app.route('/report/<table>?<field>=<param>') 

def advancedReport(table, field, param): 

 if g.user: # check for user session 

  param = param.replace("%2f", "/") 

  query = dbsession.execute("select * from {0} where {0}.{1} like 
'%{2}%'".format(table, field, param)) 

  rows = query.fetchall() 



EEE521 Final Year Project 2017/18  B00642761 

 

 

65 

 

 

  result = [] 

  for row in rows: 

   result.append(dict(row)) 

  return render_template('report.html', table=table, field=field, 
param=param, query=result) 

 return redirect(url_for('signin')) 

 

# compare password with database 

def check_password(hashed_password, user_password, salt): 

    return hashed_password == hashlib.sha256((user_password.encode()) + 
salt).hexdigest() 

 

# compare credentials with database 

def validate(username, password): 

    completion = False 

    users = dbsession.query(User) 

    for user in users: 

        if user.username == username: 

            completion = check_password(user.password, password, user.salt) 

    return completion 

 

# sign in user 

@app.route('/signin/', methods=['GET', 'POST']) 

def signin(): 

    error = None 

    if request.method == 'POST': 

        session.pop('user', None) 

        uname = request.form['username'] 

        pword = request.form['password'] 



EEE521 Final Year Project 2017/18  B00642761 

 

 

66 

 

 

        completion = validate(uname, pword) 

        if completion == True: 

            session['user'] = uname # create user session 

            return redirect(url_for('main')) 

        else: 

            error = 'Invalid Credentials. Please try again.' 

    return render_template('signin.html', error=error) 

 

# delete session 

@app.route('/signout/') 

def signout(): 

    session.pop('user', None) 

    return redirect(url_for('main')) 

 

 # create user session 

@app.before_request 

def before_request(): 

    g.user = None 

    if 'user' in session: 

        g.user = session['user'] 

 

 

if __name__ == '__main__': 

    app.secret_key = 
"\xc2\x0f\xdc\x9d0\x10A\xfa:DO\xcf\xa8%\xf0\x8e\xc1\xcb=\xf8$\xaa\xc8\xfb" 

    app.debug = True 

    app.run(host = '0.0.0.0', port = 5000) 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

67 

 

 

layout.html 

<!DOCTYPE html> 

<html> 

<head> 

    <meta charset="utf-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1"> 

    <meta http-equiv="X-UA-Compatible" content="IE=edge"> 

    <title>{% block title %}{% endblock %} - Spyder</title> 

    <link rel="shortcut icon" type="image/x-icon" href="{{ url_for('static', 
filename='img/favicon.png') }}" /> 

    <link rel="stylesheet" type="text/css" 
href="https://fonts.googleapis.com/css?family=Open+Sans"> 

    <link rel="stylesheet" type="text/css" href="{{ url_for('static', 
filename='css/bootstrap.min.css') }}"> 

    <link rel="stylesheet" type="text/css" href="{{ url_for('static', 
filename='css/style.css') }}"> 

    <script src="{{ url_for('static', filename='js/jquery-2.2.4.min.js') 
}}"></script> 

    <script src="{{ url_for('static', filename='js/bootstrap.min.js') 
}}"></script> 

</head> 

<body> 

    <div class="container-fluid"> 

        <header class="row"> 

            <div class="col-xs-12 col-head"> 

                <nav class="navbar navbar-default"> 

                    <div class="container-fluid"> 

                        <div class="navbar-header col-lg-3"> 

                            <button type="button" class="navbar-toggle collapsed" 
data-toggle="collapse" data-target="#bs-example-navbar-collapse-1" aria-
expanded="false"> 

                                <span class="sr-only">Toggle navigation</span> 



EEE521 Final Year Project 2017/18  B00642761 

 

 

68 

 

 

                                <span class="icon-bar"></span> 

                                <span class="icon-bar"></span> 

                                <span class="icon-bar"></span> 

                            </button> 

                            <a class="navbar-left" href="{{ url_for('main') }}"> 

                                <img class="img-responsive navimg" src="{{ 
url_for('static', filename='img/spyder-logo.png') }}" alt="Spyder | A Scrapy Tool" 
title="Spyder | A Scrapy Tool"> 

                            </a> 

                        </div> 

                        <div class="collapse navbar-collapse" id="bs-example-
navbar-collapse-1"> 

                            <ul class="nav navbar-nav col-lg-9"> 

                                <li><a href="{{ url_for('main') 
}}">Spider</a></li> 

                                <li><a id="db" href="{{ url_for('report') 
}}">Catch Report</a></li> 

                                <li><a href="{{ url_for('advancedSearch') 
}}">Search</a></li> 

                                {% if g.user %} 

                                <li class="signin"><a href="{{ url_for('signout') 
}}">Sign Out</a></li> 

                                {% else %} 

                                <li class="signin"><a href="{{ url_for('signin') 
}}">Sign In</a></li> 

                                {% endif %} 

                            </ul> 

                        </div> 

                    </div> 

                </nav> 

            </div> 

        </header> 



EEE521 Final Year Project 2017/18  B00642761 

 

 

69 

 

 

        <div class="col-xs-12"> 

            {% block content %}{% endblock %} 

        </div> 

    </div> 

    {% block script %}{% endblock %} 

    <script> 

        $("#menu").click(function(e) { 

            $("#nav").addClass("open"); 

            e.stopPropagation(); 

        }); 

    </script> 

</body> 

</html> 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

70 

 

 

index.html 

{% extends "layout.html" %} 

{% block title %}Spider{% endblock %} 

{% block content %} 

<div class="row"> 

    <div class="col-md-9 col-xs-12 col-head"> 

        <span class="h1">Scrape target website</span> 

        <div class="row"> 

            <div class="col-xs-12 col-data"> 

                <form id="spiderform" method="POST"> 

                    <div class="col-xs-12"> 

                        <div class="col-xs-12 form-group col-req"> 

                            <label for="site">Please enter a webite you wish to 
scrape</label> 

                            <select class="form-control" name="site" id="site"> 

                                
<option>file:///home/evan/Documents/reddit1.html</option> 

                                
<option>file:///home/evan/Documents/4chan.html</option> 

                            </select> 

                        </div> 

                        <div class="col-md-2 col-xs-12 form-group submit"> 

                            <input type="submit" value="Submit" class="btn btn-md 
btn-primary btn-block submitBtn"> 

                        </div> 

                    </div> 

                </form> 

            </div> 

        </div> 

    </div> 



EEE521 Final Year Project 2017/18  B00642761 

 

 

71 

 

 

</div> 

{% endblock %} 

{% block script %} 

{% endblock %} 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

72 

 

 

spider.html 

{% extends "layout.html" %} 

{% block title %}Scraping website...{% endblock %} 

{% block content %} 

<div class="row"> 

    <div class="col-xs-12 col-head"> 

        <span class="h1">Please wait while the spider scrapes the target 
website...</span> 

    </div> 

</div> 

{% endblock %} 

{% block script %} 

<script> 

    setTimeout(function() { 

        $('#db')[0].click(); 

    }, 5000); 

</script> 

{% endblock %} 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

73 

 

 

report.html 

{% extends "layout.html" %} 

{% block title %}Catch report{% endblock %} 

{% block content %} 

<div class="row"> 

    <div class="col-xs-12 col-head"> 

        <span class="h1">Catch report</span> 

        <div class="row"> 

            <div class="col-xs-12 col-data table-overflow"> 

                <table class="table" id="report"></table> 

            </div> 

        </div> 

    </div> 

</div> 

{% endblock %} 

{% block script %} 

<script> 

    var catches = {{ query|tojson|safe }}; 

 

    $(function(){ 

        var table = $("#report"); 

        var row = $("<tr>"); 

        row.append("<th>Buzzword", "<th>Message", "<th>Author", "<th>Date", 
"<th>Website"); 

        table.append(row); 

        for (i = catches.length-1; i >= 0; i--) { 

            var row = $("<tr>"); 

            row.append("<td class='col-xs-2'>"+catches[i].word, "<td class='col-
xs-5'>"+catches[i].message, "<td class='col-xs-2'>"+catches[i].author, "<td 



EEE521 Final Year Project 2017/18  B00642761 

 

 

74 

 

 

class='col-xs-1'>"+catches[i].catchdate, "<td class='col-xs-
2'>"+catches[i].website); 

            table.append(row); 

        } 

    }); 

</script> 

{% endblock %} 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

75 

 

 

advanced.html 

{% extends "layout.html" %} 

{% block title %}Advanced search{% endblock %} 

{% block content %} 

<div class="row"> 

    <div class="col-md-9 col-xs-12 col-head"> 

        <span class="h1">Advanced search</span> 

        <div class="row"> 

            <div class="col-xs-12 col-data"> 

                <form id="reportForm" action="{{ url_for('advancedSearch') }}" 
method="POST"> 

                    <div class="col-xs-12"> 

                        <div class="col-xs-12 form-group col-req"> 

                            <span><strong>Field</strong></span> 

                            <select class="form-control" name="field" id="field"> 

                                <option value="word">Buzzword</option> 

                                <option value="author">Author</option> 

                                <option value="catchdate">Date</option> 

                                <option value="website">Website</option> 

                            </select> 

                        </div> 

                        <div class="col-xs-12 form-group"> 

                            <span><strong>Parameter</strong></span> 

                            <input class="form-control" type="text" name="param" 
id="param"> 

                        </div> 

                        <div class="col-md-2 col-xs-12 form-group submit"> 

                            <input type="submit" value="Search" class="btn btn-md 
btn-primary btn-block submitBtn"> 



EEE521 Final Year Project 2017/18  B00642761 

 

 

76 

 

 

                        </div> 

                    </div> 

                </form> 

            </div> 

        </div> 

    </div> 

</div> 

{% endblock %} 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

77 

 

 

signin.html 

{% extends "layout.html" %} 

{% block title %}Sign in{% endblock %} 

{% block content %} 

<div class="col-centered col-xs-12 col-md-6 col-lg-4"> 

<form class="form-signin" id="signin" autocomplete="off" method="POST"> 

    <h2 class="form-signin-heading">Please sign in</h2> 

    <p class="col-hidden error" id="error"><span class="glyphicon glyphicon-
exclamation-sign" aria-hidden="true"></span>&nbsp;&nbsp;{{ error }}</p> 

    <div class="form-group col-req"> 

        <input type="text" name="username" id="username" class="form-control" 
placeholder="Username" required autofocus> 

    </div> 

    <div class="form-group col-req"> 

        <input type="password" name="password" id="password" class="form-control" 
placeholder="Password" required> 

    </div> 

    <div class="form-group submit"> 

        <input type="submit" value="Sign In" class="btn btn-md btn-primary btn-
block submitBtn"> 

    </div> 

</form> 

</div> 

{% endblock %} 

{% block script %} 

<script src="{{ url_for('static', filename='js/jquery.validate.min.js') 
}}"></script> 

<script> 

    $("#loggedUser").hide(); 

    $(".btn-link").hide(); 



EEE521 Final Year Project 2017/18  B00642761 

 

 

78 

 

 

    $(".dropdown").hide(); 

    $("footer").hide(); 

 

    $(function() { 

        if ($("#error").text() !== "\xa0\xa0None") { 

            $("#error").removeClass("col-hidden"); 

        } 

    }); 

 

    $("#signin").validate({ 

        highlight: function(element) { 

            $(element).closest('.col-req').addClass('has-error'); 

        }, 

        unhighlight: function(element) { 

            $(element).closest('.col-req').removeClass('has-error'); 

        }, 

        errorElement: 'span', 

        errorClass: 'help-block', 

        errorPlacement: function(error, element) { 

            if(element.parent('.input-group').length) { 

                error.insertAfter(element.parent()); 

            } else { 

                error.insertAfter(element); 

            } 

        } 

    }); 

</script> 

{% endblock %} 



EEE521 Final Year Project 2017/18  B00642761 

 

 

79 

 

 

style.css 

.col-hidden { 

    display: none;; 

} 

 

.table-overflow { 

    overflow-x: auto; 

} 

 

.col-icon { 

    margin-top: 20px; 

    margin-left: 20px; 

} 

 

.col-data { 

    margin-top: 20px; 

} 

 

.submit { 

    margin-top: 20px; 

} 

 

.col-centered { 

    float: none; 

    margin: 0 auto; 

} 

 

.error { 



EEE521 Final Year Project 2017/18  B00642761 

 

 

80 

 

 

    color: #a94442; 

} 

 

.navbar-default { 

    border-color: transparent; 

} 

 

@media screen and (min-width: 992px) { 

    .col-line { 

       border-left: 1px solid gray; 

       float:left; 

    } 

 

    .col-pc { 

        display: initial; 

    } 

 

    .col-mobile { 

        display: none; 

    } 

 

    .col-head { 

        padding-top: 15px; 

    } 

} 

 

@media screen and (max-width: 991px) { 

    .col-line { 



EEE521 Final Year Project 2017/18  B00642761 

 

 

81 

 

 

       border-top: 1px solid gray; 

       padding-top: 5px; 

    } 

 

    .col-pc { 

        display: none; 

    } 

 

    .col-mobile { 

        display: initial; 

    } 

 

    .col-head { 

        padding-top: 5px; 

    } 

 

    .navimg { 

        max-width: 195px; 

    } 

 

    .nav { 

        display: flex; 

        flex-direction: column; 

    } 

} 

 

@media screen and (max-width: 1199px) { 

    .col-search { 



EEE521 Final Year Project 2017/18  B00642761 

 

 

82 

 

 

        padding-top: 15px; 

    } 

} 

  



EEE521 Final Year Project 2017/18  B00642761 

 

 

83 

 

 

7.3 Appendix C Test Suite 

test.py 

#!/usr/bin/env python 

# -*- coding: utf-8 -*- 

import os 

import app 

import unittest 

import tempfile 

from flask import url_for 

 

class AppTestCase(unittest.TestCase): 

 

    def setUp(self): 

        self.db_fd, app.app.config['DATABASE'] = tempfile.mkstemp() 

        app.app.config['DEBUG'] = False 

        app.app.config['TESTING'] = True 

        app.app.config['SERVER_NAME'] = 'myapp.dev:5000' 

        app.app.config['SECRET_KEY'] = 'secret' 

        self.app = app.app.test_client() 

 

    def tearDown(self): 

        os.close(self.db_fd) 

        os.unlink(app.app.config['DATABASE']) 

 

 

    def signin(self, username, password): 

        with app.app.app_context(): 

            return self.app.post(url_for('signin'), data=dict( 



EEE521 Final Year Project 2017/18  B00642761 

 

 

84 

 

 

                username=username, 

                password=password 

            ), follow_redirects=True) 

 

    def signout(self): 

        with app.app.app_context(): 

            return self.app.get(url_for('signout'), follow_redirects=True) 

 

    def test_1_signin_signout(self): 

        with app.app.app_context(): 

            rv = self.signin('admin', 'admin123') 

            assert 'Scrape target website' in rv.data 

            rv = self.signout() 

            assert 'Please sign in' in rv.data 

            rv = self.signin('adminx', 'admin123') 

            assert 'Invalid Credentials. Please try again.' in rv.data 

            rv = self.signin('admin', 'defaultx') 

            assert 'Invalid Credentials. Please try again.' in rv.data 

 

    def test_2_index(self): 

        with app.app.app_context(): 

            self.signout() 

            rv = self.app.get(url_for('main'), follow_redirects=True) 

            assert 'Please sign in' in rv.data 

            self.signin('admin', 'admin123') 

            rv = self.app.get(url_for('main')) 

            assert 'Scrape target website' in rv.data 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

85 

 

 

    def test_3_spider(self): 

        with app.app.app_context(): 

            self.signout() 

            url = "reddit.com" 

            rv = rv = self.app.get(url_for('spider', url=url), 
follow_redirects=True) 

            assert 'Please sign in' in rv.data 

            self.signin('admin', 'admin123') 

            url = "reddit.com" 

            rv = self.app.get(url_for('spider', url=url)) 

            assert 'Please wait while the spider scrapes the target website...' in 
rv.data 

            url = "4chan.org" 

            rv = self.app.get(url_for('spider', url=url)) 

            assert 'Please wait while the spider scrapes the target website...' in 
rv.data 

            url = "invalidsite.com" 

            rv = self.app.get(url_for('spider', url=url), follow_redirects=True) 

            assert 'Scrape target website' in rv.data 

 

    def test_4_report(self): 

        with app.app.app_context(): 

            self.signout() 

            rv = self.app.get(url_for('report'), follow_redirects=True) 

            assert 'Please sign in' in rv.data 

            self.signin('admin', 'admin123') 

            rv = self.app.get(url_for('report')) 

            assert 'Catch report' in rv.data 

 



EEE521 Final Year Project 2017/18  B00642761 

 

 

86 

 

 

    def test_5_search(self): 

        with app.app.app_context(): 

            self.signout() 

            rv = self.app.get(url_for('advancedReport', table="catches", 
field="word", param="pimp"), follow_redirects=True) 

            assert 'Please sign in' in rv.data 

            self.signin('admin', 'admin123') 

            rv = self.app.get(url_for('advancedReport', table="catches", 
field="word", param="pimp")) 

            assert 'Catch report' in rv.data 

 

 

if __name__ == '__main__': 

    unittest.main() 

 


